Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications

We present a multiresonant vibration energy harvester designed for ultra-low-power applications in industrial environments together with an optimized harvester design. The proposed device features dual-frequency operation, enabling the harvesting of energy over a wider operational frequency range. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-07, Vol.13 (7), p.1078
Hauptverfasser: Bouhedma, Sofiane, Hu, Siyang, Schütz, Arwed, Lange, Fred, Bechtold, Tamara, Ouali, Mohammed, Hohlfeld, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a multiresonant vibration energy harvester designed for ultra-low-power applications in industrial environments together with an optimized harvester design. The proposed device features dual-frequency operation, enabling the harvesting of energy over a wider operational frequency range. It has been designed such that its harvesting bandwidth range is [50, 100] Hz, which is a typical frequency range for vibrations found in industrial applications. At an excitation level of 0.5 g, a maximum mean power output of 6 mW and 9 mW can be expected at the resonance frequencies of 63.3 and 76.4 Hz, respectively. The harvester delivers a power density of 492 µW/cm2. Design optimization led to improved harvester geometries yielding up to 2.6 times closer resonance frequencies, resulting in a wider harvesting bandwidth and a significantly higher power output.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13071078