A sensitive and reproducible qRT-PCR assay detects physiological relevant trace levels of FMR1 mRNA in individuals with Fragile X syndrome

Fragile X syndrome (FXS) is the most common inherited intellectual disability. FXS is caused by a trinucleotide repeat expansion in the 5′ untranslated region of the FMR1 gene, which leads to gene methylation, transcriptional silencing, and lack of expression of Fragile X Messenger Riboprotein (FMRP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-03, Vol.13 (1), p.3808-3808, Article 3808
Hauptverfasser: Straub, Devan, Schmitt, Lauren M., Boggs, Anna E., Horn, Paul S., Dominick, Kelli C., Gross, Christina, Erickson, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragile X syndrome (FXS) is the most common inherited intellectual disability. FXS is caused by a trinucleotide repeat expansion in the 5′ untranslated region of the FMR1 gene, which leads to gene methylation, transcriptional silencing, and lack of expression of Fragile X Messenger Riboprotein (FMRP). Currently available FXS therapies are inefficient, and the disease severity is highly variable, making it difficult to predict disease trajectory and treatment response. We and others have recently shown that a subset of full-mutation, fully-methylated (FM–FM) males with FXS express low amounts of FMRP which could contribute to phenotypic variability. To better understand the underlying mechanisms, we developed a sensitive qRT-PCR assay to detect FMR1 mRNA in blood. This assay reproducibly detects trace amounts of FMR1 mRNA in a subset of FM–FM males, suggesting that current Southern Blot and PCR determination of FM–FM status is not always associated with complete transcriptional silencing. The functional relevance of trace-level FMR1 mRNA is confirmed by showing a positive correlation with cognitive function; however, phenotypic variability is not fully explained by FMR1 expression. These results corroborate the need for better molecular assays for FXS diagnosis and encourage studies to elucidate the factors contributing to the phenotypic variability of FXS.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-29786-4