Engineering of Salmonella Phages into Novel Antimicrobial Tailocins

Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2023-11, Vol.12 (22), p.2637
Hauptverfasser: Woudstra, Cedric, Sørensen, Anders Nørgaard, Brøndsted, Lone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen , by deleting the or gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells12222637