Scanning of a Dental Implant with a High-Frequency Ultrasound Scanner: A Pilot Study

The purpose of this in vitro study was to assess the trueness of a dental implant scanned using an intraoral high-frequency ultrasound prototype and compared with conventional optical scanners. An acrylic resin cast containing a dental implant at position 11 was scanned with a fringe projection 3D s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-06, Vol.11 (12), p.5494
Hauptverfasser: Bohner, Lauren, Habor, Daniel, Radermacher, Klaus, Wolfart, Stefan, Marotti, Juliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this in vitro study was to assess the trueness of a dental implant scanned using an intraoral high-frequency ultrasound prototype and compared with conventional optical scanners. An acrylic resin cast containing a dental implant at position 11 was scanned with a fringe projection 3D sensor for use as a reference dataset. The same cast was scanned 10 times for each group. Ultrasound scanning was performed with a high-frequency probe (42 MHz, aperture diameter of 4 mm and focus length of 8 mm), and 3D images were reconstructed based on the depth of each surface point echo. Optical scans were performed in a laboratory and with an intraoral scanner. A region of interest consisting of the dental implant site was segmented and matched to the reference dataset. Trueness was defined as the closeness between experimental data and the reference surface. Statistical analysis was performed with one-way ANOVA and post-hoc tests with a significance level of p = 0.05. No statistical difference was found among the evaluated scanners. The mean deviation error was 57.40 ± 17.44 µm for the ultrasound scanner, 75.40 ± 41.43 µm for the laboratory scanner and 38.55 ± 24.34 µm for the intraoral scanner. The high-frequency ultrasound scanner showed similar trueness to optical scanners for digital implant impression.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11125494