Effects of oxygen availability on mycobenthic communities of marine coastal sediments

In coastal marine sediments, oxygen availability varies greatly, and anoxic conditions can develop quickly over low spatial resolution. Although benthic fungi are important players in the marine carbon cycle, little is known about their adaptation to fluctuating availability of oxygen as terminal el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.15218-9, Article 15218
Hauptverfasser: Yang, Yanyan, Rivera Pérez, Carmen Alicia, Richter-Heitmann, Tim, Nimzyk, Rolf, Friedrich, Michael W., Reich, Marlis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In coastal marine sediments, oxygen availability varies greatly, and anoxic conditions can develop quickly over low spatial resolution. Although benthic fungi are important players in the marine carbon cycle, little is known about their adaptation to fluctuating availability of oxygen as terminal electron acceptor. Here, we study which part of a mycobenthic community from oxic coastal sediments can thrive under temporarily anoxic conditions. We test whether phylogeny or certain fungal traits promote plasticity in respect to changes in oxygen availability. Therefore, we incubated mycobenthos under oxic and anoxic conditions, performed ITS2 Illumina tag-sequencing and an additional meta-analysis on a literature survey. Half of all OTUs showed a plasticity towards changing oxygen availability and exhibited different strategies towards anoxic conditions, with rapid response within hours or a delayed one after several days. The strategy of dimorphism and facultative yeasts were significantly linked to OTU occurrence in anoxic conditions, while phylogeny and other traits had less effect. Our results suggest that different fungal niches are formed over the duration of prolonged anoxic conditions. The taxon-specific proliferation seems to be regulated by the fine-tuning of various traits and factors. It is essential to take these results into account when conducting conceptual work on the functionality of the marine benthos.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-42329-1