Monotonicity and non-monotonicity regions of topological entropy for Lorenz-like families with infinite derivatives

We study behavior of the topological entropy as the function of parameters for two-parameter family of symmetric Lorenz maps ) = (−1 + ) · ). This is the normal form for splitting the homoclinic loop in systems which have a saddle equilibrium with one-dimensional unstable manifold and zero saddle va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and nonlinear sciences 2020-07, Vol.5 (2), p.293-306
Hauptverfasser: Malkin, M.I., Safonov, K.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study behavior of the topological entropy as the function of parameters for two-parameter family of symmetric Lorenz maps ) = (−1 + ) · ). This is the normal form for splitting the homoclinic loop in systems which have a saddle equilibrium with one-dimensional unstable manifold and zero saddle value. Due to L.P. Shilnikov results, such a bifurcation corresponds to the birth of Lorenz attractor (when the saddle value becomes positive). We indicate those regions in the bifurcation plane where the topological entropy depends monotonically on the parameter , as well as those for which the monotonicity does not take place. Also, we indicate the corresponding bifurcations for the Lorenz attractors.
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.2.00052