Using training impulse and monotony methods to monitor aerobic training load in rats

This study is the first to apply training impulse (TRIMP) and Training Monotony (TM) methodologies, within the realm of sport science, in animal model studies. Rats were divided into Sedentary (SED, n=10) and Training (TR, n=13). TR performed a four-week moderate-intensity interval training with loa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anais da Academia Brasileira de Ciências 2024-01, Vol.96 (2), p.e20231388-e20231388
Hauptverfasser: Silva, Arthur P DA, Rebelo, Macário A, Barbieri, Ricardo Augusto, Carvalho, Carlos D DE, Moraes, Camila DE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study is the first to apply training impulse (TRIMP) and Training Monotony (TM) methodologies, within the realm of sport science, in animal model studies. Rats were divided into Sedentary (SED, n=10) and Training (TR, n=13). TR performed a four-week moderate-intensity interval training with load progression. Lactate kinetics, lactate training impulse (TRIMPLac), maximal speed training impulse (TRIMPSmax) and TM were utilized to develop and monitor training protocol. TR showed an 11.9% increase in time to exhaustion at the second maximum incremental test and a 17.5% increase at the third test. External work was increased by 17.8% at the second test and 30.3% at the third. There was a 10.6% increase in external work at the third test compared to the second for TR. No difference in TRIMPLac between the 1st week (94±9 A.U) and 3rdweek (83±10 A.U) were seen. TRIMPSmax was 2400 A.U. in the 1st week, 2760 A.U. in the 2nd and 3rd weeks, and 3120 A.U. in the 4th week. The TM remained at 1.24 A.U throughout the protocol and there was no dropouts. TRIMPLac and TRIMPSmax contributed to the development and monitoring loads, demonstrating their potential to improve the accuracy of training protocols in animal model research.
ISSN:0001-3765
1678-2690
1678-2690
DOI:10.1590/0001-3765202420231388