Congruences Involving Special Sums of Triple Reciprocals

Define the sums of triple reciprocals Zn=∑i+j+k=n1/ijk,i,j,k≥1. Zhao discovered the following curious congruence for any odd prime p, Zp≡−2Bp−3mod p. Xia and Cai extended the above congruence to modulo p2,Zp≡12Bp−3/p−3−3B2p−4/p−2mod p2, where p>5 is a prime. In this paper, we consider the congrue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2024, Vol.2024, p.1-8
1. Verfasser: Shen, Zhongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Define the sums of triple reciprocals Zn=∑i+j+k=n1/ijk,i,j,k≥1. Zhao discovered the following curious congruence for any odd prime p, Zp≡−2Bp−3mod p. Xia and Cai extended the above congruence to modulo p2,Zp≡12Bp−3/p−3−3B2p−4/p−2mod p2, where p>5 is a prime. In this paper, we consider the congruences about Zp−1+N/N (where x is the integral part of x, N=1,2,3,4,6) modulo p2. When N=1, the results we obtain are the results of Zhao and Xia and Cai.
ISSN:2314-4629
2314-4785
DOI:10.1155/2024/8445635