Time-Sharing Control Strategy for Multiple-Receiver Wireless Power Transfer Systems
The cross-coupling effect between the induction coils of a multiple-receiver wireless power transfer (MRWPT) system severely weakens its overall performance. In this paper, a time-sharing control strategy for MRWPT systems is proposed to reduce the cross-coupling between receiver coils. An active-br...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020, Vol.13 (3), p.599 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cross-coupling effect between the induction coils of a multiple-receiver wireless power transfer (MRWPT) system severely weakens its overall performance. In this paper, a time-sharing control strategy for MRWPT systems is proposed to reduce the cross-coupling between receiver coils. An active-bridge rectifier is introduced to the receivers to replace the uncontrollable rectifier to achieve synchronization of the time-sharing control. The synchronization signal generated by an active-bridge rectifier can be directly used to realize the synchronization of time-sharing control and hence saved the traditional zero-crossing point detection circuits for time-sharing circuits. Moreover, the proposed time-sharing system has the advantages of both operating under a resistance-matching condition and providing target output voltage for each receiver. Furthermore, a voltage control strategy was developed to provide both high efficiency and a target output voltage for each receiver. Finally, the simulation and experimental results show that the time-sharing MRWPT system reduced the cross-coupling effect between the receiver coils, and the voltage control strategy provided both a high efficiency and a target output voltage for each receiver. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13030599 |