Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information

Due to the lack of theoretical research on the amount of spatio-temporal information in high-speed photography technologies, obtaining an optimized system with the best amount of spatio-temporal information remains a challenge, resulting in insufficient effective information and observation accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2024-01, Vol.11 (1), p.24
Hauptverfasser: Zhu, Yongle, Zeng, Xuanke, Ling, Weijun, Zeng, Liangwei, Zhao, Yuxiang, Yang, Jinfang, Li, Jingzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the lack of theoretical research on the amount of spatio-temporal information in high-speed photography technologies, obtaining an optimized system with the best amount of spatio-temporal information remains a challenge, resulting in insufficient effective information and observation accuracy for ultrafast events. This paper presents an ultrafast raster imaging (URI) system with a large amount of spatio-temporal information based on the all-optical raster principle in single-shot. Specifically, we derive the optimal equation of spatial resolution and the expression for the maximum amount of spatio-temporal information that can achieve excellent performance for a URI system. It serves as a general guideline for obtaining a large amount of information design in the URI system. Compared with the existing URI systems, the advanced URI system exhibits an improvement of nearly one order of magnitude in the amount of spatio-temporal information and more than twofold in spatial resolution. It shows great potential for capturing intricate and non-repetitive ultrafast events on the femtosecond time scale.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics11010024