Nanoscale Evaluation of the Degradation Stability of Black Phosphorus Nanosheets Functionalized with PEG and Glutathione-Stabilized Doxorubicin Drug-Loaded Gold Nanoparticles in Real Functionalized System

Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its pucker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-04, Vol.29 (8), p.1746
Hauptverfasser: Gunathilaka, Thisari Maleesha, Shimomura, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of BP leads to higher sensitivity and chemical reactivity towards H O and O molecules, resulting in the degradation of the structure with physical and chemical changes. In our study, we synthesize polyethylene glycol (PEG) and glutathione-stabilized doxorubicin drug-assembled Au nanoparticle (Au-GSH-DOX)-functionalized BP nanosheets (BP-PEG@Au-GSH-DOX) with improved degradation stability, biocompatibility, and tumor-targeting ability. Transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy indicate the nanoscale degradation behavior of synthesized nanoconjugates in three different environmental exposure conditions, and the results demonstrate the remarkable nanoscale stability of BP-PEG@Au-GSH-DOX against the degradation of BP, which provides significant interest in employing 2D BP-based nanotherapeutic agents for tumor-targeted cancer phototherapy.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29081746