Nanoscale cooperative adsorption for materials control

Adsorption plays vital roles in many processes including catalysis, sensing, and nanomaterials design. However, quantifying molecular adsorption, especially at the nanoscale, is challenging, hindering the exploration of its utilization on nanomaterials that possess heterogeneity across different len...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-07, Vol.12 (1), p.4287-4287, Article 4287
Hauptverfasser: Ye, Rong, Zhao, Ming, Mao, Xianwen, Wang, Zhaohong, Garzón, Diego A., Pu, Heting, Zhao, Zhiheng, Chen, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption plays vital roles in many processes including catalysis, sensing, and nanomaterials design. However, quantifying molecular adsorption, especially at the nanoscale, is challenging, hindering the exploration of its utilization on nanomaterials that possess heterogeneity across different length scales. Here we map the adsorption of nonfluorescent small molecule/ion and polymer ligands on gold nanoparticles of various morphologies in situ under ambient solution conditions, in which these ligands are critical for the particles’ physiochemical properties. We differentiate at nanometer resolution their adsorption affinities among different sites on the same nanoparticle and uncover positive/negative adsorption cooperativity, both essential for understanding adsorbate-surface interactions. Considering the surface density of adsorbed ligands, we further discover crossover behaviors of ligand adsorption between different particle facets, leading to a strategy and its implementation in facet-controlled synthesis of colloidal metal nanoparticles by merely tuning the concentration of a single ligand. Adsorption is a fundamentally important process but challenging to quantify, especially at the nanoscale. Here, the authors map the adsorption affinity and cooperativity of various ligands on single gold nanoparticles and discover adsorption crossover behaviors between different facets, leading to a strategy to control particle shape.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24590-y