Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization

Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-09, Vol.12 (1), p.5579-5579, Article 5579
Hauptverfasser: Sharma, Rajesh, Choi, Kyoung-Jae, Quan, My Diem, Sharma, Sonum, Sankaran, Banumathi, Park, Hyekyung, LaGrone, Anel, Kim, Jean J., MacKenzie, Kevin R., Ferreon, Allan Chris M., Kim, Choel, Ferreon, Josephine C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid–liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state. KLF4, OCT4, SOX2 and MYC cooperate to reorganize chromatin during somatic cell reprogramming. Here the authors show that KLF4 forms a liquid-like biomolecular condensate that recruits OCT4 and SOX2, and that condensation of the isolated KLF4 DNA binding domain with DNA is enhanced by CpG methylation
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25761-7