Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces

In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2021, Vol.2021, p.1-28
Hauptverfasser: Betancor, Jorge J., Rodríguez-Mesa, Lourdes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given.
ISSN:2314-8896
2314-8888
DOI:10.1155/2021/6899603