Characteristics of antenna fabricated using additive manufacturing technology and the potential applications
Antennas play a critical role in modern technology. They are used in various devices and applications, including wireless communication, broadcasting, navigation, military, and space. Overall, the importance of antennas in technology lies in their ability to transmit and receive signals, allowing co...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (6), p.e27785-e27785, Article e27785 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antennas play a critical role in modern technology. They are used in various devices and applications, including wireless communication, broadcasting, navigation, military, and space. Overall, the importance of antennas in technology lies in their ability to transmit and receive signals, allowing communication and information transfer across various applications and devices. Three-dimensional printing technology creates antennas using multiple materials, including plastics, metals, and ceramics. Some standard 3D printing techniques used to create antennas include Fused Deposition Modeling (FDM), Stereolithography (SLA), and Selective Laser Sintering (SLS). These antennas can be made in various shapes and sizes. 3D printing can help create complex and customized antenna designs that are difficult or impossible to produce using traditional manufacturing methods. 3D-printing technology has many advantages for building antennas, including customization, ease of fabrication, and cost-effectiveness. This review comprehensively evaluates the usage of 3D-printing technology in antenna fabrication. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e27785 |