Variability in frost occurrence under climate change and consequent risk of damage to trees of western Quebec, Canada
Climate change affects timings, frequency, and intensity of frost events in northern ecosystems. However, our understanding of the impacts that frost will have on growth and survival of plants is still limited. When projecting the occurrence of frost, the internal variability and the different under...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-05, Vol.12 (1), p.7220-7220, Article 7220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change affects timings, frequency, and intensity of frost events in northern ecosystems. However, our understanding of the impacts that frost will have on growth and survival of plants is still limited. When projecting the occurrence of frost, the internal variability and the different underlying physical formulations are two major sources of uncertainty of climate models. We use 50 climate simulations produced by a single-initial large climate ensemble and five climate simulations produced by different pairs of global and regional climate models based on the concentration pathway (RCP 8.5) over a latitudinal transect covering the temperate and boreal ecosystems of western Quebec, Canada, during 1955–2099 to provide a first-order estimate of the relative importance of these two sources of uncertainty on the occurrence of frost, i.e. when air temperature is |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-11105-y |