A guide for deploying Deep Learning in LHC searches: How to achieve optimality and account for uncertainty
Deep learning tools can incorporate all of the available information into a search for new particles, thus making the best use of the available data. This paper reviews how to optimally integrate information with deep learning and explicitly describes the corresponding sources of uncertainty. Simple...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2020-06, Vol.8 (6), p.090, Article 090 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep learning tools can incorporate all of the available information into a search for new particles, thus making the best use of the available data. This paper reviews how to optimally integrate information with deep learning and explicitly describes the corresponding sources of uncertainty. Simple illustrative examples show how these concepts can be applied in practice. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.8.6.090 |