Using Congestion Zones for Solving the Time Dependent Vehicle Routing Problem
This paper provides a framework for solving the Time Dependent Vehicle Routing Problem (TDVRP) by using historical data. The data are used to predict travel times during certain times of the day and derive zones of congestion that can be used by optimization algorithms. A combination of well-known a...
Gespeichert in:
Veröffentlicht in: | Promet 2020-01, Vol.32 (1), p.25-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper provides a framework for solving the Time Dependent Vehicle Routing Problem (TDVRP) by using historical data. The data are used to predict travel times during certain times of the day and derive zones of congestion that can be used by optimization algorithms. A combination of well-known algorithms was adapted to the time dependent setting and used to solve the real-world problems. The adapted algorithm outperforms the best-known results for TDVRP benchmarks. The proposed framework was applied to a real-world problem and results show a reduction in time delays in serving customers compared to the time independent case. |
---|---|
ISSN: | 0353-5320 1848-4069 |
DOI: | 10.7307/ptt.v32i1.3296 |