An Investigation of In Vitro Bioactivities and Cytotoxicities of Spray Pyrolyzed Apatite Wollastonite Glass-Ceramics

An apatite-wollastonite glass ceramic (AWGC) has been recognized as one of the popular bioactive materials due to its good osteoconductivity and high mechanical properties in the field of tissue engineering. Various processes have been developed to fabricate AWGCs. Among them, the sol-gel process is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2023-07, Vol.13 (7), p.1049
Hauptverfasser: Workie, Andualem Belachew, Ningsih, Henni Setia, Yeh, Wen-Ling, Shih, Shao-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An apatite-wollastonite glass ceramic (AWGC) has been recognized as one of the popular bioactive materials due to its good osteoconductivity and high mechanical properties in the field of tissue engineering. Various processes have been developed to fabricate AWGCs. Among them, the sol-gel process is one of the most popular processes. However, sol-gel has the drawbacks of discontinuous processing and long processing time, making it unsuitable for mass production. This study demonstrates a successful synthesis of AWGCs using a spray pyrolysis method to overcome these drawbacks, and the prepared pellets were sintered at temperatures of 700, 800, 900, 1000, and 1100 °C for four hours. In addition, X-ray diffraction, scanning electron microscopy, and X-ray energy-dispersive spectroscopy were used to obtain the phase composition, morphology, and chemical information of AWGCs. For bioactive measurements, among these AWGC samples, the 1100 °C sintered sample reveals the highest bioactivity. The MTT result indicates that all AWGCs are not non-toxic to the MC3T3-E1 cells and increase the growth rate of MC3T3-E1 cells.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13071049