Recent Developments in Biological Processing Technology for Palm Oil Mill Effluent Treatment-A Review
POME is the most voluminous waste generated from palm oil milling activities. The discharge of POME into the environment without any treatment processing could inflict an undesirable hazard to humans and the environment due to its high amount of toxins, organic, and inorganic materials. The treatmen...
Gespeichert in:
Veröffentlicht in: | Biology (Basel, Switzerland) Switzerland), 2022-03, Vol.11 (4), p.525 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | POME is the most voluminous waste generated from palm oil milling activities. The discharge of POME into the environment without any treatment processing could inflict an undesirable hazard to humans and the environment due to its high amount of toxins, organic, and inorganic materials. The treatment of POME prior to discharge into the environment is utmost required to protect the liability for human health and the environment. Biological treatments are preferable due to eco-friendly attributes that are technically and economically feasible. The goal of this review article is to highlight the current state of development in the biological processing technologies for POME treatment. These biological processing technologies are conducted in the presence of fungi, bacteria, microalgae, and a consortium of microorganisms. Numerous microbes are listed to identify the most efficient strain by monitoring the BOD, COD, working volume of the reactor, and treatment time. The most effective processing technology for POME treatment uses an upflow anaerobic sludge blanket reactor with the COD value of 99%, hydraulic retention time of 7.2 days, and a working volume of 4.7 litres. Biological processing technologies are mooted as an efficient and sustainable management practice of POME waste. |
---|---|
ISSN: | 2079-7737 2079-7737 |
DOI: | 10.3390/biology11040525 |