CFD Study on the Influence of Exostructure Elements on the Resistance of a Submarine

Submersible vessels designed to operate at low speeds are often designed with an intricate exostructure, as well as other elements that are located outside of the main pressure hull. Exostructure elements are often of cylindrical or rectangular shape, positioned perpendicularly to the flow direction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2022-10, Vol.10 (10), p.1542
Hauptverfasser: Gatin, Inno, Čokić, Juvel, Romić, Darjan, Parunov, Joško
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Submersible vessels designed to operate at low speeds are often designed with an intricate exostructure, as well as other elements that are located outside of the main pressure hull. Exostructure elements are often of cylindrical or rectangular shape, positioned perpendicularly to the flow direction. For this reason, their resistance coefficient is relatively large compared to the pressure hull or appendages of a classical submarine. In some cases, the exostructure can significantly increase the wetted surface of the vessel and dominate its resistance. This paper presents a study on how different exostructure elements impact the overall resistance of a submarine relative to the resistance of the cylindrical, smooth, pressure hull. Additionally, the effect of depth is also considered. The study is conducted using the RANS-based CFD method. The subject of the study is a 25 m long tourist submarine designed for depths up to 40 m and a speed of up to 3 knots.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse10101542