Desalination of Municipal Wastewater Using Forward Osmosis

Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2021-02, Vol.11 (2), p.119
Hauptverfasser: Ezugbe, Elorm Obotey, Kweinor Tetteh, Emmanuel, Rathilal, Sudesh, Asante-Sackey, Dennis, Amo-Duodu, Gloria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.16 and 0.14 L/min respectively), using 70 g/L NaCl solution as the draw solution. The results obtained showed an average of 97.67% rejection of SO and CO while Cl was found to enrich the feed solution (FS). An average removal of 88.92% was achieved for the organics. A permeation flux of 5.06 L/m .h was obtained. The kinetics of the ions transport was studied, and was found to fit the second-order kinetic model, with Pearson's R-values of 0.998 and 0.974 for Cl and CO respectively. The study proves FO as a potential technology to desalinate saline MWW.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes11020119