Corrosion behavior and microstructure of Al–10Zn alloy with nano CuO addition

The present study explores the preparation of Al–10wt.%Zn alloy by the casting process. Nano CuO was prepared by the Co-precipitation method. The effect of adding nanostructure of (1wt.% CuO) to Al–10Zn alloy was studied the corrosion effects as-cast and with different aging temperatures (423, 443,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-08, Vol.13 (1), p.12855-12855, Article 12855
Hauptverfasser: AbdElRhiem, Eman, Mohamed, Saad G., Barakat, Yosry F., Mostafa, M. M., Nada, R. H., Abdelaziz, Shereen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study explores the preparation of Al–10wt.%Zn alloy by the casting process. Nano CuO was prepared by the Co-precipitation method. The effect of adding nanostructure of (1wt.% CuO) to Al–10Zn alloy was studied the corrosion effects as-cast and with different aging temperatures (423, 443, and 463 K) for 2 h in 3.5% NaCl aqueous solution after homogenized for 2 h at 500 K at room temperature. Electrochemical measurements (OCP, Tafel, and EIS) were performed to determine the corrosion rate (C.R.) and corrosion current density (I corr. ) to find out corrosion behavior. In addition, microstructures of Al–10Zn and Al–10Zn–1CuO were observed using a scanning electron microscope, EDX mapping, and the optical microscope to investigate the effect of the nanoparticle’s addition before and after aging and the corrosion test. The average crystal size and the dislocation density were calculated from the XRD pattern. The results show that the appropriate addition of CuO nanoparticles can refine the Al–10Zn alloy and shift the Al–10Zn alloy to a more noble direction.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-39515-6