Towards a new generation of parton densities with deep learning models
We present a new regression model for the determination of parton distribution functions (PDF) using techniques inspired from deep learning projects. In the context of the NNPDF methodology, we implement a new efficient computing framework based on graph generated models for PDF parametrization and...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2019-08, Vol.79 (8), p.1-9, Article 676 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new regression model for the determination of parton distribution functions (PDF) using techniques inspired from deep learning projects. In the context of the NNPDF methodology, we implement a new efficient computing framework based on graph generated models for PDF parametrization and gradient descent optimization. The best model configuration is derived from a robust cross-validation mechanism through a hyperparametrization tune procedure. We show that results provided by this new framework outperforms the current state-of-the-art PDF fitting methodology in terms of best model selection and computational resources usage. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-019-7197-2 |