Air-Based Contactless Wafer Precision Positioning System

This paper presents the development of a contactless sensing system and the dynamic evaluation of an air-bearing-based precision wafer positioning system. The contactless positioning stage is a response to the trend seen in the high-tech industry, where the substrates are becoming thinner and larger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (16), p.7588
Hauptverfasser: Hooijschuur, Rico, Saikumar, Niranjan, HosseinNia, S. Hassan, van Ostayen, Ron A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the development of a contactless sensing system and the dynamic evaluation of an air-bearing-based precision wafer positioning system. The contactless positioning stage is a response to the trend seen in the high-tech industry, where the substrates are becoming thinner and larger to reduce the cost and increase the yield. Using contactless handling it is possible to avoid damage and contamination. The system works by floating the substrate on a thin film of air. A viscous traction force is created on the substrate by steering the airflow. A cascaded control design structure has been implemented on the contactless positioning system, where the inner loop controller (ILC) controls the actuator which steers the airflow and the outer loop controller (OLC) controls the position of the substrate by controlling the reference of the ILC. The dynamics of the ILC are evaluated and optimized for the performance of the positioning of the substrate. The vibration disturbances are also handled by the ILC. The bandwidth of the system has been improved to 300 Hz. For the OLC, a linear charge-coupled device has been implemented as a contactless sensor. The performance of the sensing system has been analysed. During control in steady-state, this resulted in a position error of the substrate of 12.9 μm RMS, which is a little more than two times the resolution. The bandwidth of the OLC is approaching 10 Hz.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11167588