Complex Dynamics in Generalized Hénon Map

The complex dynamics of generalizedHénon map with nonconstant Jacobian determinant areinvestigated. The conditions of existence for fold bifurcation,flip bifurcation, and Hopf bifurcation are derived by using centermanifold theorem and bifurcation theory and checked up bynumerical simulations. Chaos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Dynamics in Nature and Society 2015-01, Vol.2015 (2015), p.747-764-075
1. Verfasser: Cai, Meixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complex dynamics of generalizedHénon map with nonconstant Jacobian determinant areinvestigated. The conditions of existence for fold bifurcation,flip bifurcation, and Hopf bifurcation are derived by using centermanifold theorem and bifurcation theory and checked up bynumerical simulations. Chaos in the sense of Marotto's definitionis proved by analytical and numerical methods. The numericalsimulations show the consistence with the theoretical analysis andreveal some new complex phenomena which can not be given bytheoretical analysis, such as the invariant cycles which areirregular closed graphics, the six and forty-one coexistinginvariant cycles, and the two, six, seven, nine, ten, and thirteencoexisting chaotic attractors, andsome kinds of strange chaotic attractors.
ISSN:1026-0226
1607-887X
DOI:10.1155/2015/270604