A Novel Feature Extraction and Fault Detection Technique for the Intelligent Fault Identification of Water Pump Bearings

The reliable and cost-effective condition monitoring of the bearings installed in water pumps is a real challenge in the industry. This paper presents a novel strong feature selection and extraction algorithm (SFSEA) to extract fault-related features from the instantaneous power spectrum (IPS). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (12), p.4225
Hauptverfasser: Irfan, Muhammad, Alwadie, Abdullah Saeed, Glowacz, Adam, Awais, Muhammad, Rahman, Saifur, Khan, Mohammad Kamal Asif, Jalalah, Mohammad, Alshorman, Omar, Caesarendra, Wahyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reliable and cost-effective condition monitoring of the bearings installed in water pumps is a real challenge in the industry. This paper presents a novel strong feature selection and extraction algorithm (SFSEA) to extract fault-related features from the instantaneous power spectrum (IPS). The three features extracted from the IPS using the SFSEA are fed to an extreme gradient boosting (XBG) classifier to reliably detect and classify the minor bearing faults. The experiments performed on a lab-scale test setup demonstrated classification accuracy up to 100%, which is better than the previously reported fault classification accuracies and indicates the effectiveness of the proposed method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21124225