On Local Antimagic Chromatic Number of Cycle-Related Join Graphs

An edge labeling of a connected graph = ( , ) is said to be local antimagic if it is a bijection : → {1, . . ., | |} such that for any pair of adjacent vertices and , ) ≠ ), where the induced vertex label ) = Σ ), with ranging over all the edges incident to . The local antimagic chromatic number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2021-02, Vol.41 (1), p.133-152
Hauptverfasser: Lau, Gee-Choon, Shiu, Wai-Chee, Ng, Ho-Kuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An edge labeling of a connected graph = ( , ) is said to be local antimagic if it is a bijection : → {1, . . ., | |} such that for any pair of adjacent vertices and , ) ≠ ), where the induced vertex label ) = Σ ), with ranging over all the edges incident to . The local antimagic chromatic number of , denoted by ), is the minimum number of distinct induced vertex labels over all local antimagic labelings of . In this paper, several sufficient conditions for ) ≤ ) are obtained, where is obtained from with a certain edge deleted or added. We then determined the exact value of the local antimagic chromatic number of many cycle-related join graphs.
ISSN:1234-3099
2083-5892
DOI:10.7151/dmgt.2177