MLUG: Bootstrapping Language-Motion Pre-Training for Unified Motion-Language Understanding and Generation

In the realm of computer vision and animation, the generation of human motion from textual descriptions represents a frontier of significant challenge and potential. This paper introduces MLUG, a groundbreaking framework poised to transform motion synthesis by harnessing the power of vision-language...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (22), p.7354
Hauptverfasser: Luo, Hongliang, Xi, Wei, Tang, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the realm of computer vision and animation, the generation of human motion from textual descriptions represents a frontier of significant challenge and potential. This paper introduces MLUG, a groundbreaking framework poised to transform motion synthesis by harnessing the power of vision-language pre-training techniques. MLUG addresses the nuanced challenge of creating semantically rich, physically plausible, and emotionally expressive human motions through a novel integration of a unimodal encoder with motion-text contrastive loss, a motion-grounded text encoder, a motion-grounded motion decoder, and a motion length predictor. These components work in concert to align textual descriptions with dynamic motion sequences, offering an innovative solution to the limitations of existing models in open-vocabulary motion generation and emotional expressiveness. Through extensive evaluations, MLUG demonstrates unparalleled effectiveness in generating realistic and diverse motions from a broad spectrum of textual inputs, setting a new benchmark in the field.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24227354