Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements
The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017 on board the Sentinel-5 Precursor (S5P) satellite, monitors the composition of the Earth's atmosphere at an unprecedented horizontal resolution as fine as 3.5 × 5.5 km2. This paper assesses the performances of the TROPOM...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics 2021-08, Vol.21 (16), p.12561-12593 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The TROPOspheric Monitoring Instrument (TROPOMI), launched in
October 2017 on board the Sentinel-5 Precursor (S5P) satellite, monitors the
composition of the Earth's atmosphere at an unprecedented horizontal
resolution as fine as 3.5 × 5.5 km2. This paper assesses the performances
of the TROPOMI formaldehyde (HCHO) operational product compared to its
predecessor, the OMI (Ozone Monitoring Instrument) HCHO QA4ECV product, at different spatial and temporal
scales. The parallel development of the two algorithms favoured the
consistency of the products, which facilitates the production of long-term
combined time series. The main difference between the two satellite products
is related to the use of different cloud algorithms, leading to a positive
bias of OMI compared to TROPOMI of up to 30 % in tropical regions. We show
that after switching off the explicit correction for cloud effects, the two
datasets come into an excellent agreement. For medium to large HCHO vertical
columns (larger than 5 × 1015 molec. cm−2) the median bias between
OMI and TROPOMI HCHO columns is not larger than 10 % ( |
---|---|
ISSN: | 1680-7324 1680-7316 1680-7324 |
DOI: | 10.5194/acp-21-12561-2021 |