A symplectic approach to Schrödinger equations in the infinite-dimensional unbounded setting

By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to $ t $-dependent Schrödinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded self-adjoint Hamil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2024-01, Vol.9 (10), p.27998-28043
Hauptverfasser: Lucas, Javier de, Lange, Julia, Rivas, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to $ t $-dependent Schrödinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded self-adjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned $ t $-dependent Schrödinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20241359