Effect of Wettability on Collapsing Cavitation Bubble near Solid Surface Studied by Multi-Relaxation-Time Lattice Boltzmann Model

Through the transformation matrix M [25], the fα and fαeq can be projected onto the moment space via m=Mf and meq=Mfeq . [...]the collision step of Equation (1) can be rewritten as: m∗=m−Λ(m−meq)+δt(I−Λ2)S where the I is the unite tensor, and the S is the forcing term in the moment space with (I−0.5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-06, Vol.8 (6), p.940
Hauptverfasser: Zhu, Yipeng, Shan, Minglei, Yang, Yu, Han, Qingbang, Zhu, Changping, Zhang, Xuewu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through the transformation matrix M [25], the fα and fαeq can be projected onto the moment space via m=Mf and meq=Mfeq . [...]the collision step of Equation (1) can be rewritten as: m∗=m−Λ(m−meq)+δt(I−Λ2)S where the I is the unite tensor, and the S is the forcing term in the moment space with (I−0.5Λ)S=MF′ . Subsequently, the paper discusses the time of cavitation generation under different negative pressure conditions. [...]the paper studies these cases where the negative pressure is set as −6.02, −5.69, −5.36, −5.02, −4.69 and −4.36, respectively. [...]the effect of wettability on the density, pressure and velocity distribution of the collapsing bubble near the solid surface is discussed. The parameter G in Equation (7) was set as −1. [...]the total force F at the bottom boundary was the superposition of the intermolecular interaction force and fluid–solid interaction force.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8060940