Improving ascertainment of suicidal ideation and suicide attempt with natural language processing

Methods relying on diagnostic codes to identify suicidal ideation and suicide attempt in Electronic Health Records (EHRs) at scale are suboptimal because suicide-related outcomes are heavily under-coded. We propose to improve the ascertainment of suicidal outcomes using natural language processing (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-09, Vol.12 (1), p.15146-11, Article 15146
Hauptverfasser: Bejan, Cosmin A., Ripperger, Michael, Wilimitis, Drew, Ahmed, Ryan, Kang, JooEun, Robinson, Katelyn, Morley, Theodore J., Ruderfer, Douglas M., Walsh, Colin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods relying on diagnostic codes to identify suicidal ideation and suicide attempt in Electronic Health Records (EHRs) at scale are suboptimal because suicide-related outcomes are heavily under-coded. We propose to improve the ascertainment of suicidal outcomes using natural language processing (NLP). We developed information retrieval methodologies to search over 200 million notes from the Vanderbilt EHR. Suicide query terms were extracted using word2vec. A weakly supervised approach was designed to label cases of suicidal outcomes. The NLP validation of the top 200 retrieved patients showed high performance for suicidal ideation (area under the receiver operator curve [AUROC]: 98.6, 95% confidence interval [CI] 97.1–99.5) and suicide attempt (AUROC: 97.3, 95% CI 95.2–98.7). Case extraction produced the best performance when combining NLP and diagnostic codes and when accounting for negated suicide expressions in notes. Overall, we demonstrated that scalable and accurate NLP methods can be developed to identify suicidal behavior in EHRs to enhance prevention efforts, predictive models, and precision medicine.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-19358-3