Design of an optimal backstepping controller for nonlinear system under disturbance
The aim of the work for this paper is the design of an optimal backstepping controller for a nonlinear pendulum system to stabilize the position of pendulum’s ball suspended in the desired position. The Cuckoo optimization algorithm (COA) has been utilized to get and tune the gain variables of the p...
Gespeichert in:
Veröffentlicht in: | Engineering and Technology Journal 2021-03, Vol.39 (3A), p.465-476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the work for this paper is the design of an optimal backstepping controller for a nonlinear pendulum system to stabilize the position of pendulum’s ball suspended in the desired position. The Cuckoo optimization algorithm (COA) has been utilized to get and tune the gain variables of the proposed backstepping controller in order to find the best torque action for the system. The numerical simulation results using (MATLAB package) show the robustness and the effectiveness of the proposed backstepping based COA controller in terms of obtaining the best torque control action without a saturation state that will stabilize the pendulum system performance. The simulation results show also that the proposed control system when compared with the other controller results has the capability of minimizing the pendulum’s ball position tracking error to the zero value at the steady state response and speeding up the system response. Moreover, the fitness evaluation value is reduced. |
---|---|
ISSN: | 1681-6900 2412-0758 2412-0758 |
DOI: | 10.30684/etj.v39i3A.1801 |