A improved pooling method for convolutional neural networks

The pooling layer in convolutional neural networks plays a crucial role in reducing spatial dimensions, and improving computational efficiency. However, standard pooling operations such as max pooling or average pooling are not suitable for all applications and data types. Therefore, developing cust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-01, Vol.14 (1), p.1589-1589, Article 1589
Hauptverfasser: Zhao, Lei, Zhang, Zhonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pooling layer in convolutional neural networks plays a crucial role in reducing spatial dimensions, and improving computational efficiency. However, standard pooling operations such as max pooling or average pooling are not suitable for all applications and data types. Therefore, developing custom pooling layers that can adaptively learn and extract relevant features from specific datasets is of great significance. In this paper, we propose a novel approach to design and implement customizable pooling layers to enhance feature extraction capabilities in CNNs. The proposed T-Max-Avg pooling layer incorporates a threshold parameter T, which selects the K highest interacting pixels as specified, allowing it to control whether the output features of the input data are based on the maximum values or weighted averages. By learning the optimal pooling strategy during training, our custom pooling layer can effectively capture and represent discriminative information in the input data, thereby improving classification performance. Experimental results show that the proposed T-Max-Avg pooling layer achieves good performance on three different datasets. When compared to LeNet-5 model with average pooling, max pooling, and Avg-TopK methods, the T-Max-Avg pooling method achieves the highest accuracy on CIFAR-10, CIFAR-100, and MNIST datasets.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-51258-6