Optimizing Health Coaching for Patients With Type 2 Diabetes Using Machine Learning: Model Development and Validation Study
Health coaching is an emerging intervention that has been shown to improve clinical and patient-relevant outcomes for type 2 diabetes. Advances in artificial intelligence may provide an avenue for developing a more personalized, adaptive, and cost-effective approach to diabetes health coaching. We a...
Gespeichert in:
Veröffentlicht in: | JMIR formative research 2022-09, Vol.6 (9), p.e37838 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Health coaching is an emerging intervention that has been shown to improve clinical and patient-relevant outcomes for type 2 diabetes. Advances in artificial intelligence may provide an avenue for developing a more personalized, adaptive, and cost-effective approach to diabetes health coaching.
We aim to apply Q-learning, a widely used reinforcement learning algorithm, to a diabetes health-coaching data set to develop a model for recommending an optimal coaching intervention at each decision point that is tailored to a patient's accumulated history.
In this pilot study, we fit a two-stage reinforcement learning model on 177 patients from the intervention arm of a community-based randomized controlled trial conducted in Canada. The policy produced by the reinforcement learning model can recommend a coaching intervention at each decision point that is tailored to a patient's accumulated history and is expected to maximize the composite clinical outcome of hemoglobin A
reduction and quality of life improvement (normalized to [ 0, 1 ], with a higher score being better). Our data, models, and source code are publicly available.
Among the 177 patients, the coaching intervention recommended by our policy mirrored the observed diabetes health coach's interventions in 17.5% (n=31) of the patients in stage 1 and 14.1% (n=25) of the patients in stage 2. Where there was agreement in both stages, the average cumulative composite outcome (0.839, 95% CI 0.460-1.220) was better than those for whom the optimal policy agreed with the diabetes health coach in only one stage (0.791, 95% CI 0.747-0.836) or differed in both stages (0.755, 95% CI 0.728-0.781). Additionally, the average cumulative composite outcome predicted for the policy's recommendations was significantly better than that of the observed diabetes health coach's recommendations (t
=10.040; P |
---|---|
ISSN: | 2561-326X 2561-326X |
DOI: | 10.2196/37838 |