Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor

Retinitis pigmentosa results in blindness due to degeneration of photoreceptors, but spares other retinal cells, leading to the hope that expression of light-activated signaling proteins in the surviving cells could restore vision. We used a retinal G protein-coupled receptor, mGluR2, which we chemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-11, Vol.8 (1), p.1862-12, Article 1862
Hauptverfasser: Berry, Michael H., Holt, Amy, Levitz, Joshua, Broichhagen, Johannes, Gaub, Benjamin M., Visel, Meike, Stanley, Cherise, Aghi, Krishan, Kim, Yang Joon, Cao, Kevin, Kramer, Richard H., Trauner, Dirk, Flannery, John, Isacoff, Ehud Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retinitis pigmentosa results in blindness due to degeneration of photoreceptors, but spares other retinal cells, leading to the hope that expression of light-activated signaling proteins in the surviving cells could restore vision. We used a retinal G protein-coupled receptor, mGluR2, which we chemically engineered to respond to light. In retinal ganglion cells (RGCs) of blind rd1 mice, photoswitch-charged mGluR2 (“SNAG-mGluR2”) evoked robust OFF responses to light, but not in wild-type retinas, revealing selectivity for RGCs that have lost photoreceptor input. SNAG-mGluR2 enabled animals to discriminate parallel from perpendicular lines and parallel lines at varying spacing. Simultaneous viral delivery of the inhibitory SNAG-mGluR2 and excitatory light-activated ionotropic glutamate receptor LiGluR yielded a distribution of expression ratios, restoration of ON, OFF and ON-OFF light responses and improved visual acuity. Thus, SNAG-mGluR2 restores patterned vision and combinatorial light response diversity provides a new logic for enhanced-acuity retinal prosthetics. To restore sight after retinal degeneration, one approach is to express light-sensitive proteins in remaining cells. Here the authors combine a light-sensitive engineered G protein-coupled receptor and ion channels to restore ON and OFF responses as well as superior visual pattern discrimination.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-01990-7