MODELING NUCLEAR DATA UNCERTAINTIES USING DEEP NEURAL NETWORKS
A new concept using deep learning in neural networks is investigated to characterize the underlying uncertainty of nuclear data. Analysis is performed on multi-group neutron cross-sections (56 energy groups) for the GODIVA U-235 sphere. A deep model is trained with cross-validation using 1000 nuclea...
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2021-01, Vol.247, p.15016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new concept using deep learning in neural networks is investigated to characterize the underlying uncertainty of nuclear data. Analysis is performed on multi-group neutron cross-sections (56 energy groups) for the GODIVA U-235 sphere. A deep model is trained with cross-validation using 1000 nuclear data random samples to fit 336 nuclear data parameters. Although of the very limited sample size (1000 samples) available in this study, the trained models demonstrate promising performance, where a prediction error of about 166 pcm is found for
k
eff
in the test set. In addition, the deep model’s sensitivity and uncertainty are validated. The comparison of importance ranking of the principal fast fission energy groups with adjoint methods shows fair agreement, while a very good agreement is observed when comparing the global
k
eff
uncertainty with sampling methods. The findings of this work shall motivate additional efforts on using machine learning to unravel complexities in nuclear data research. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202124715016 |