Rational Limit Cycles on Abel Polynomial Equations
In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-06, Vol.8 (6), p.885 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and three rational (non-polynomial) limit cycles when A 1 ≡ 0 . Moreover, we show that these upper bounds are sharp. We show that the general Abel equations can always be reduced to this one. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8060885 |