Rational Limit Cycles on Abel Polynomial Equations

In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-06, Vol.8 (6), p.885
1. Verfasser: Valls, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and three rational (non-polynomial) limit cycles when A 1 ≡ 0 . Moreover, we show that these upper bounds are sharp. We show that the general Abel equations can always be reduced to this one.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8060885