Modification and application of highly active alkaline pectin lyase

Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii , modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMB Express 2022-10, Vol.12 (1), p.130-130, Article 130
Hauptverfasser: Li, Pi-Wu, Ma, Jun, Wei, Xiao-Feng, Zhang, Zi-Yang, Wang, Rui-Ming, Xiao, Jing, Wang, Jun-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii , modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, the catalytic activity of the enzyme was significantly improved. The optimum pH and temperature of the modified pectin lyase (PGLA-rep4) were 11.0 and 70 °C, respectively. It also exhibited a superior ability to cleave methylated pectin. The enzyme activity of PGLA-rep4, measured at 235 nm with 0.2% apple pectin as the substrate, was 554.0 U/mL, and the specific enzyme activity after purification using a nickel column was 822.9 U/mg. After approximately 20 ns of molecular dynamics simulation, the structure of the pectin lyase PGLA-rep4 tended to be stable. The root mean square fluctuation (RMSF) values at the key catalytically active site, LYS168, were higher than those of the wildtype PGLA. In addition, PGLA-rep4 was relatively stable in the presence of metal ions. PGLA-rep4 has good enzymatic properties and activities and maintains a high pH and temperature. This study provides a successful strategy for enhancing the catalytic activity of PGLA-rep4, making it the ultimate candidate for degumming and various uses in the pulp, paper, and textile industries.
ISSN:2191-0855
2191-0855
DOI:10.1186/s13568-022-01472-0