Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils

Polylactic acid (PLA) is one of the most promising biodegradable and recyclable thermoplastic biopolymer derived from renewable feedstock. Nanocellulose reinforced PLA biocomposites have received increasing attention in academic and industrial communities. In the present study, cellulose nanofibrils...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-07, Vol.25 (14), p.3306
Hauptverfasser: Wang, Qianqian, Ji, Chencheng, Sun, Jianzhong, Zhu, Qianqian, Liu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polylactic acid (PLA) is one of the most promising biodegradable and recyclable thermoplastic biopolymer derived from renewable feedstock. Nanocellulose reinforced PLA biocomposites have received increasing attention in academic and industrial communities. In the present study, cellulose nanofibrils (CNFs) was liberated by combined enzymatic pretreatment and high-pressure homogenization, and then subsequently incorporated into the PLA matrix to synthesize PLA/CNF biocomposite films via solution casting and melt compression. The prepared PLA/CNF biocomposite films were characterized in terms of transparency (UV-Vis spectroscopy), chemical structure (attenuated total reflectance-Fourier transform infrared, ATR-FTIR; X-ray powder diffraction, XRD), thermal (thermogravimetric analyzer, TGA; differential scanning calorimetry, DSC), and tensile properties. With 1.0-5.0 wt % additions of CNF to the PLA matrix, noticeable improvements in thermal and physical properties were observed for the resulting PLA/CNF biocomposites. The 2.5 wt % addition of CNF increased the tensile strength by 8.8%. The T (initial degradation temperature) and T (maximum degradation temperature) after adding 5.0 wt % CNF was increased by 20 °C, and 10 °C, respectively in the nitrogen atmosphere. These improvements were attributed to the good dispersibility and improved interfacial interaction of CNF in the PLA matrix.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25143306