Gold Nanoparticles with N‐Heterocyclic Carbene/Triphenylamine Surface Ligands: Stable and Electrochromically Active Hybrid Materials for Optoelectronics

Organic‐hybrid particle‐based materials are increasingly important in (opto)electronics, sensing, and catalysis due to their printability and stretchability as well as their potential for unique synergistic functional effects. However, these functional properties are often limited due to poor electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Science 2024-08, Vol.11 (29), p.e2400752-n/a
Hauptverfasser: Sun, Ningwei, Singh, Shivam, Zhang, Haoran, Hermes, Ilka, Zhou, Ziwei, Schlicke, Hendrik, Vaynzof, Yana, Lissel, Franziska, Fery, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic‐hybrid particle‐based materials are increasingly important in (opto)electronics, sensing, and catalysis due to their printability and stretchability as well as their potential for unique synergistic functional effects. However, these functional properties are often limited due to poor electronic coupling between the organic shell and the nanoparticle. N‐heterocyclic carbenes (NHCs) belong to the most promising anchors to achieve electronic delocalization across the interface, as they form robust and highly conductive bonds with metals and offer a plethora of functionalization possibilities. Despite the outstanding potential of the conductive NHC‐metal bond, synthetic challenges have so far limited its application to the improvement of colloidal stabilities, disregarding the potential of the conductive anchor. Here, NHC anchors are used to modify redox‐active gold nanoparticles (AuNPs) with conjugated triphenylamines (TPA). The resulting AuNPs exhibit excellent thermal and redox stability benefiting from the robust NHC‐gold bond. As electrochromic materials, the hybrid materials show pronounced color changes from red to dark green, a highly stable cycling stability (1000 cycles), and a fast response speed (5.6 s/2.1 s). Furthermore, TPA‐NHC@AuNP exhibits an ionization potential of 5.3 eV and a distinct out‐of‐plane conductivity, making them a promising candidate for application as hole transport layers in optoelectronic devices. An organic‐hybrid material is prepared using robust and conductive N‐heterocyclic carbene to couple gold nanoparticles and triphenylamines. The redox‐active nanoparticles are stable and show fast red‐to‐green electrochromic response. Furthermore, their energy levels and conductivity make them a model for designing new hole‐transport layers for emerging photovoltaics.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202400752