Estimating the density of deep eutectic solvents applying supervised machine learning techniques

Deep eutectic solvents (DES) are recently synthesized to cover limitations of conventional solvents. These green solvents have wide ranges of potential usages in real-life applications. Precise measuring or accurate estimating thermophysical properties of DESs is a prerequisite for their successful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-03, Vol.12 (1), p.4954-4954, Article 4954
Hauptverfasser: Abdollahzadeh, Mohammadjavad, Khosravi, Marzieh, Hajipour Khire Masjidi, Behnam, Samimi Behbahan, Amin, Bagherzadeh, Ali, Shahkar, Amir, Tat Shahdost, Farzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep eutectic solvents (DES) are recently synthesized to cover limitations of conventional solvents. These green solvents have wide ranges of potential usages in real-life applications. Precise measuring or accurate estimating thermophysical properties of DESs is a prerequisite for their successful applications. Density is likely the most crucial affecting characteristic on the solvation ability of DESs. This study utilizes seven machine learning techniques to estimate the density of 149 deep eutectic solvents. The density is anticipated as a function of temperature, critical pressure and temperature, and acentric factor. The LSSVR (least-squares support vector regression) presents the highest accuracy among 1530 constructed intelligent estimators. The LSSVR predicts 1239 densities with the mean absolute percentage error (MAPE) of 0.26% and R 2  = 0.99798. Comparing the LSSVR and four empirical correlations revealed that the earlier possesses the highest accuracy level. The prediction accuracy of the LSSVR (i.e., MAPE = 0. 26%) is 74.5% better than the best-obtained results by the empirical correlations (i.e., MAPE = 1.02%).
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-08842-5