Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier

The Convolutional Neural Network (CNN) is one of the widely used deep learning models that offers the chance to boost farming productivity through autonomous inference of field conditions. In this paper, CNN is connected to a Support Vector Machine (SVM) to form a new model CNN-SVM; the CNN models c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-08, Vol.23 (16), p.7153
Hauptverfasser: Wu, Yanjuan, He, Yuzhe, Wang, Yunliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Convolutional Neural Network (CNN) is one of the widely used deep learning models that offers the chance to boost farming productivity through autonomous inference of field conditions. In this paper, CNN is connected to a Support Vector Machine (SVM) to form a new model CNN-SVM; the CNN models chosen are ResNet-50 and VGG16 and the CNN-SVM models formed are ResNet-50-SVM and VGG16-SVM. The method consists of two parts: ResNet-50 and VGG16 for feature extraction and SVM for classification. This paper uses the public multi-class weeds dataset DeepWeeds for training and testing. The proposed ResNet-50-SVM and VGG16-SVM approaches achieved 97.6% and 95.9% recognition accuracies on the DeepWeeds dataset, respectively. The state-of-the-art networks (VGG16, ResNet-50, GoogLeNet, Densenet-121, and PSO-CNN) with the same dataset are accurate at 93.2%, 96.1%, 93.6%, 94.3%, and 96.9%, respectively. In comparison, the accuracy of the proposed methods has been improved by 1.5% and 2.7%, respectively. The proposed ResNet-50-SVM and the VGG16-SVM weed classification approaches are effective and can achieve high recognition accuracy.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167153