Systemic analysis of osteoblast-specific DNA methylation marks reveals novel epigenetic basis of osteoblast differentiation

DNA methylation is an important epigenetic modification that contributes to the lineage commitment and specific functions of different cell types. In this study, we compared ENCODE-generated genome-wide DNA methylation profiles of human osteoblast with 21 other types of human cells in order to ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone Reports 2017-06, Vol.6 (C), p.109-119
Hauptverfasser: Yu, Fangtang, Shen, Hui, Deng, Hong-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA methylation is an important epigenetic modification that contributes to the lineage commitment and specific functions of different cell types. In this study, we compared ENCODE-generated genome-wide DNA methylation profiles of human osteoblast with 21 other types of human cells in order to identify osteoblast-specific methylation events. For most of the cell strains, data from two isogenic replicates were included, resulting in a total of 51 DNA methylation datasets. We identified 852 significant osteoblast-specific differentially methylated CpGs (DMCs) and 295 significant differentially methylated regions (DMRs). Significant DMCs/DMRs were not enriched in CpG islands (CGIs) and promoters, but more strongly enriched in CGI shores/shelves and in gene body and intergenic regions. The genes associated with significant DMRs were highly enriched in biological processes related to transcriptional regulation and critical for regulating bone metabolism and skeletal development under physiologic and pathologic conditions. By integrating the DMR data with the extensive gene expression and chromatin epigenomics data, we observed complex, context-dependent relationships between DNA methylation, chromatin states, and gene expression, suggesting diverse DNA methylation-mediated regulatory mechanisms. Our results also highlighted a number of novel osteoblast-relevant genes. For example, the integrated evidences from DMR analysis, histone modification and RNA-seq data strongly support that there is a novel isoform of ( ) gene specifically expressed in osteoblast. was known to function as a cell adhesion molecule in the vertebrate nervous system, but its functional role in bone is completely unknown and thus worth further investigation. In summary, we reported a comprehensive analysis of osteoblast-specific DNA methylation profiles and revealed novel insights into the epigenetic basis of osteoblast differentiation and activity.
ISSN:2352-1872
2352-1872
DOI:10.1016/j.bonr.2017.04.001