mgpr: An R package for multivariate Gaussian process regression
Gaussian process regression (GPR) is a non-parametric kernel-based machine learning method. GPR is based on Bayesian formalism, which enables the estimation of prediction uncertainty of the response variables. We propose an R package that provides an easy-to-use interface for multivariate GPR. The m...
Gespeichert in:
Veröffentlicht in: | SoftwareX 2023-12, Vol.24, p.101563, Article 101563 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gaussian process regression (GPR) is a non-parametric kernel-based machine learning method. GPR is based on Bayesian formalism, which enables the estimation of prediction uncertainty of the response variables. We propose an R package that provides an easy-to-use interface for multivariate GPR. The mgpr package was originally developed for remote sensing-based forest inventories that require multivariate prediction of forest attributes. The mgpr package supports both univariate and multivariate responses using a separable kernel and includes a robust hyperparameter estimation algorithm. The mgpr package is suitable for various regression problems with single response or multiple responses and provides good prediction performance. |
---|---|
ISSN: | 2352-7110 2352-7110 |
DOI: | 10.1016/j.softx.2023.101563 |