mgpr: An R package for multivariate Gaussian process regression

Gaussian process regression (GPR) is a non-parametric kernel-based machine learning method. GPR is based on Bayesian formalism, which enables the estimation of prediction uncertainty of the response variables. We propose an R package that provides an easy-to-use interface for multivariate GPR. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX 2023-12, Vol.24, p.101563, Article 101563
Hauptverfasser: Varvia, Petri, Räty, Janne, Packalen, Petteri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaussian process regression (GPR) is a non-parametric kernel-based machine learning method. GPR is based on Bayesian formalism, which enables the estimation of prediction uncertainty of the response variables. We propose an R package that provides an easy-to-use interface for multivariate GPR. The mgpr package was originally developed for remote sensing-based forest inventories that require multivariate prediction of forest attributes. The mgpr package supports both univariate and multivariate responses using a separable kernel and includes a robust hyperparameter estimation algorithm. The mgpr package is suitable for various regression problems with single response or multiple responses and provides good prediction performance.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2023.101563