Joint improvements of radar/infrared stealth for exhaust system of unmanned aircraft based on sorting factor Pareto solution

In order to reduce the radar cross section (RCS) of the unmanned aircraft while suppressing its infrared signature, a comprehensive design method (CDM) based on sorting factor Pareto solution is presented. The physical optics and physical diffraction theory are used to evaluate the electromagnetic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-04, Vol.11 (1), p.8251-8251, Article 8251
Hauptverfasser: Zhou, Ze Yang, Huang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to reduce the radar cross section (RCS) of the unmanned aircraft while suppressing its infrared signature, a comprehensive design method (CDM) based on sorting factor Pareto solution is presented. The physical optics and physical diffraction theory are used to evaluate the electromagnetic scattering characteristics of the aircraft, and the Monte Carlo and ray tracing method are used to evaluate the infrared radiation intensity of the exhaust system. CDM is used to evaluate and screen each individual in each offspring, and the design parameters and sub-models of the aircraft exhaust system are continuously improved. The results show that the exhaust port model, lower baffle and nozzle height are the main factors affecting the RCS indicators, nozzle stages, exhaust port model, lower baffle and outer width make the main contribution to infrared radiation suppression. The presented CDM is efficient and effective in enhancing the radar/infrared integrated stealth performance of the aircraft.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-87756-0