Spectral concentration in Sturm-Liouville equations with large negative potential
We consider the spectral function, $ho_{alpha} (lambda)$, associated with the linear second-order question $$ y'' + (lambda - q(x)) y = 0 quad hbox{in } [0, infty) $$ and the initial condition $$ y(0) cos (alpha) + y' (0) sin (alpha) = 0, quad alpha in [0, pi). $$ in the case where $q...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2010-09, Vol.2010 (133), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the spectral function, $ho_{alpha} (lambda)$, associated with the linear second-order question $$ y'' + (lambda - q(x)) y = 0 quad hbox{in } [0, infty) $$ and the initial condition $$ y(0) cos (alpha) + y' (0) sin (alpha) = 0, quad alpha in [0, pi). $$ in the case where $q (x) o - infty$ as $x o infty$. We obtain a representation of $ho_0 (lambda)$ as a convergent series for $lambda > Lambda_0$ where $Lambda_0$ is computable, and a bound for the points of spectral concentration. |
---|---|
ISSN: | 1072-6691 |