Patient-specific forecasting of postradiotherapy prostate-specific antigen kinetics enables early prediction of biochemical relapse
The detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to occur, thereby delaying the delivery of a secondary treatment to patients with recu...
Gespeichert in:
Veröffentlicht in: | iScience 2022-11, Vol.25 (11), p.105430-105430, Article 105430 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to occur, thereby delaying the delivery of a secondary treatment to patients with recurring tumors. To address this issue, we propose to use patient-specific forecasts of PSA dynamics to predict biochemical relapse earlier. Our forecasts are based on a mechanistic model of prostate cancer response to external beam radiotherapy, which is fit to patient-specific PSA data collected during standard posttreatment monitoring. Our results show a remarkable performance of our model in recapitulating the observed changes in PSA and yielding short-term predictions over approximately 1 year (cohort median root mean squared error of 0.10–0.47 ng/mL and 0.13 to 1.39 ng/mL, respectively). Additionally, we identify 3 model-based biomarkers that enable accurate identification of biochemical relapse (area under the receiver operating characteristic curve > 0.80) significantly earlier than standard practice (p |
---|---|
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2022.105430 |