Improved production of 2'-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative α-1, 2-fucosyltransferase from Bacillus cereus
2'-fucosyllactose (2'-FL) is one of the most abundant oligosaccharides in human milk. It constitutes an authorized functional additive to improve infant nutrition and health in manufactured infant formulations. As a result, a cost-effective method for mass production of 2'-FL is highl...
Gespeichert in:
Veröffentlicht in: | Microbial cell factories 2021-08, Vol.20 (1), p.165-165, Article 165 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2'-fucosyllactose (2'-FL) is one of the most abundant oligosaccharides in human milk. It constitutes an authorized functional additive to improve infant nutrition and health in manufactured infant formulations. As a result, a cost-effective method for mass production of 2'-FL is highly desirable.
A microbial cell factory for 2'-FL production was constructed in Saccharomyces cerevisiae by expressing a putative α-1, 2-fucosyltransferase from Bacillus cereus (FutBc) and enhancing the de novo GDP-L-fucose biosynthesis. When enabled lactose uptake, this system produced 2.54 g/L of 2'-FL with a batch flask cultivation using galactose as inducer and carbon source, representing a 1.8-fold increase compared with the commonly used α-1, 2-fucosyltransferase from Helicobacter pylori (FutC). The production of 2'-FL was further increased to 3.45 g/L by fortifying GDP-mannose synthesis. Further deleting gal80 enabled the engineered strain to produce 26.63 g/L of 2'-FL with a yield of 0.85 mol/mol from lactose with sucrose as a carbon source in a fed-batch fermentation.
FutBc combined with the other reported engineering strategies holds great potential for developing commercial scale processes for economic 2'-FL production using a food-grade microbial cell factory. |
---|---|
ISSN: | 1475-2859 1475-2859 |
DOI: | 10.1186/s12934-021-01657-5 |